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Continuous freezing in an infinite-range one-dimensional model

Carlo Carraro
Department of Chemical Engineering, University of California, Berkeley, California 94720

~Received 28 January 2003; published 22 May 2003!

The partition function of the classical one-dimensional hard rod fluid with a residual long range interaction
can be evaluated exactly, with the aid of an auxiliary field, in the limit where the range of the potential goes to
infinity. If the Fourier spectrum of the residual interaction lacks components at finite wave vector, the infinite
range limit recovers the celebrated result of the Kac-Uhlenbeck-Hemmer model of condensation. Otherwise, it
predicts a continuous second-order freezing transition.
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I. INTRODUCTION

Much attention has been given, in recent times, to
behavior of matter confined inside one-dimensional ch
nels. A prime example is provided by noble gas adsor
inside carbon nanotubes. From the point of view of class
statistical mechanics, these systems might be dismisse
completely trivial, since thermal fluctuations will always d
stabilize any order atT.0. However, the weak interaction
in the transverse dimensions, such as those occurring w
many nanotubes bundle up in three-dimensional structu
conspire to make the physics considerably more interest
e.g., by stabilizing ordered low temperature phases@1,2#. It
turns out that the behavior of these systems is very an
tropic, and the strong correlations that may be present
usually well described by one-dimensional models, with
propriate perturbations@3#.

In this paper, I discuss a class of strictly one-dimensio
~1D! models that are amenable to exact solution and disp
nontrivial phase behavior even in one dimension. This
possible when the interparticle interactions are of sufficien
long range, so that a local thermal fluctuation does not p
vent particles to the left and to the right from acting coo
eratively and maintaining long range order at nonzero te
perature. The model I discuss is that of a classical fluid w
a pairwise interparticle potential of the form

V~x2x8!5V0~x2x8!2V1~x2x8!, ~1!

whereV0 is the hard core potential of ranges and V1 is a
residual interaction of rangeg21. The grand canonical par
tition function of the model,Q, can be written exactly, afte
effecting a Hubbard-Stratonovich~HS! transformation, in
terms of the grand potential of the hard rod system in
external field~the auxiliary HS field!. Let Q5(N50

` zNQN ,
wherez denotes fugacity. TheN-particle canonical partition
function at inverse temperatureb is given by

QN5
1

N! E )
n

dxnexpS 2bV01
1

2
bV1~xi2xj ! D . ~2!

The grand partition function can be expressed as a fu
tional integral over an auxiliary fieldc(x) through the
Hubbard-Stratonovich transformation, following Woo a
Song@4#:
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Q5AE D@c~x!#

3expS 2
1

2E dxE dx8W1~x2x8!c~x!c~x8! D
3exp~2bV0@c#!. ~3!

Here,V0@c# is the grand potential of the 1D hard rod syste
in the external fieldc(x), W1 is the functional inverse of
bV1, and the normalization constantA is the determinant of
V1 given by

A5expS 2
1

2
tr ln 2pV1D5expF2

1

2E dk

2p
ln 2pV1~k!G .

~4!

It should be emphasized that Eq.~3! is exact, provided that
W1 exists. Since an exact solution is available for hard ro
exact solutions of the interacting system can be obtaine
the interesting case of infinite range interactions.

Physical interaction potentials decompose naturally as
pressed in Eq.~1!, although there is some degree of arbitra
ness in choosing the mathematical form ofV1. But such
arbitrariness is confined to the region near the hard core
thus it is of no consequence to the present discussion.

The remainder of the paper is organized as follows.
Sec. II, the relevant properties of the hard rod system
reviewed, with emphasis on the convexity of the grand p
tential. In Sec. III, I show that partition function can b
evaluated in the saddle point approximation. The approxim
tion becomes exact in the infinite range limit, discussed
Sec. IV, where, in particular, the results of Kac, Uhlenbe
and Hemmer@5# are recovered for their model of hard rod
plus exponential attraction. In Sec. V, I consider potenti
with nontrivial momentum dependence in the infinite ran
limit. Unlike the Kac model, whereV̂1(k);d(k) in that
limit, a nontrivial momentum dependence allows for a tra
sition to a crystalline phase. This transition is shown to be
second order.

II. ONE-DIMENSIONAL FLUIDS

The key to the solution of the interacting 1D problem li
in the hard rod grand potentialV0@c#. The exact solution of
©2003 The American Physical Society02-1
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the hard rod system in an external field, found by Percus@6#,
is given in terms of the density functionalbV0@r#
[bV0@c#2*dzr(z)c(z). Unfortunately, to my knowl-
edge, no explicit form is available for the grand potent
V0@c#. Constructing the latter from the former is difficul
because the relation between field and density,

c~x!1 ln r~x!2 ln z5 lnF12E
x2s

x

r~w!dwG
2E

x

x1s

ds
r~s!

12E
s2s

s

r~w!dw

,

~5!

cannot be inverted in any simple manner to yield an exp
sion for r@c# in an arbitrary field. On the other hand, th
functional derivatives ofV0@c# have a simple expression i
terms of the density, a fact that will prove very helpful in th
following sections. Thus, the first derivative is simply th
negative of the density in the presence of the external fie

dbV0@c#

dc~x!
52r~x!, ~6!

and the second derivative is the Ursell function

d2bV0@c#

dc~x!dc~x8!
52

dr~x!

dc~x8!
5 2S0~x,x8!. ~7!

Of course, the two formulations in terms ofr andc are
equivalent, and many useful mathematical properties of
grand potential can be derived from the properties of
density functionalV0@r#:

bV0@r#5E
2`

`

dzr~z!F lnS r~z!

zS 12E
z2s

z

dwr~w! D D 21G .

~8!

Of particular interest are the expressions for the dir
correlation functions@6#:

cn~z1 , . . . ,zn!

[
dn21@c~z1!1 ln r~z1!#

dr~z2!•••dr~zn!

52~n22!!(
i 51

n )
j Þ i

@e~zi2zj !e~zj2zi1s!#

F12E
z2s

z

r~w!dwGn21

2~n21!! E dz

r~z!)
j 51

n

@e~z2zj !e~zj2z1s!#

F12E
z2s

z

r~w!dwGn . ~9!
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Note that all cn’s are negative or zero everywhere inR n.
Noting thatdbV0@r#/dr(z)52c(z), from Eq.~9! it fol-

lows that

dnbV0@r#

dr~z1!•••dr~zn!
52cn~z1 , . . . ,zn!1

dn21ln r~z1!

dr~z2!•••dr~zn!
.

~10!

The negativity of the correlation functions@Eq. ~9!# implies
that all even-order functional derivatives ofV0 are positive
definite.

This fact in turn implies thatV0 ~regarded as a functiona
of eitherc or r) is convex. Hence, it has a single minimum
Since a uniform density solution can always be found,
1D HS system existsonly in the fluid phase. The density i
found as the root of the transcendental equation

r

z
5~12rs!expS 2

rs

12rs D . ~11!

Note that although the existence of a single disordered ph
is expected in 1D because of fluctuations, the convexity
V0 is a much stronger statement, as it excludes transiti
even in mean field theory~MFT! ~unlike, e.g., the 1D Ising
model, which does display an ordering transition in MFT!.

III. THE SADDLE POINT EVALUATION OF THE
PARTITION FUNCTION

The functional integral in Eq.~3! can be evaluated by th
saddle point method. The saddle point configurationc0(x) is
obtained as the solution to the equation

dbV0@c#

dc~x!
1E dx8W1~x2x8!c~x8!50. ~12!

AlthoughV0@c# is unknown, this equation can be solved b
noting that the left-hand side~lhs! is ~minus! the density in
the presence of the external fieldc0(x), by virtue of Eq.~6!.
Thus, using Eq.~5!, one obtains the following equations fo
the saddle point density~rather than the field!:

E dx8bV1~x2x8!r~x8!52 lnF r~x!

zS 12E
x2s

x

r~w!dwD G
2E

x

x1s

ds
r~s!

12E
s2s

s

r~w!dw

.

~13!

Substituting into Eq.~8!, one finds the equation of state i
the saddle point approximation@4#,

bp5bp02
1

2LE dxE dx8bV1~x2x8!r~x!r~x8!,

~14!
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wherep0 is the pressure of the hard rod system at the sad
point density.

Equation~13! admits a unique solutionr̄(x) provided that
form d2bV@c#/dc(x)dc(x8) is positive definite, or,
equivalently, that

2S0~x2x8!1W1~x2x8!.0. ~15!

Once the saddle point density profile is determined@let us
call it r̄(x)], the saddle point field is obtained as

c̄~x!5E dx8bV1~x2x8!r̄~x8!. ~16!

A shift in the functional integration variableh(x)5c(x)
2c̄(x) allows one to recast the partition function in the su
gestive form

Q5Q̄AE D@h~x!#

3expF2
1

2E dxE dx8h~x!h~x8!S W1~x2x8!

1
d2bV0@c#

dc~x!dc~x8!
U

c̄
D GexpF2

1

3!E dxE dx8

3E dx9h~x!h~x8!h~x9!
d3bV0@c#

dc~x!dc~x8!dc~x9!
U

c̄
G •••,

~17!

where

Q̄5expS 2bV0@c̄#2
1

2E dxE dx8W1~x2x8!c̄~x!c̄~x8! D
5expS E dx

r̄~x2s!

12E
x2s

x

dwr̄~w!

2
1

2E dxE dx8bV1~x2x8!r̄~x!r̄~x8!D . ~18!

Thus, the partition function is broken down into thre
factors. The first one, embodied inQ̄, leads to the mean field
equation of state; the second one, stemming fromA and
from the terms quadratic inh, represents the RPA correctio
to the equation of state; and the third one contains all high
order corrections. Note that the higher-order terms multi
n-point correlation functions of the hard rod system. T
knowledge of their explicit form is not needed in what fo
lows, however. This is because in the infinite range limit,
higher order corrections are shown to vanish.
05150
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IV. THE INFINITE RANGE LIMIT AND THE KAC-
UHLENBECK-HEMMER MODEL

Consider the following residual interaction:

V1~x!5ag exp~2guxu!. ~19!

This is the model studied by Kacet al. @5#. They showed that
the partition function in the thermodynamic limit is given b
the largest eigenvalue of the kernel of a certain linear integ
equation. They studied the limitg→0 and found that the
exact equation of state of the system has precisely the
der Waals form~below the critical point, it must be comple
mented by the Maxwell construction!.

The result of Kacet al. is recovered promptly in the func
tional integral formalism exposed in the preceding secti
To begin, note that in the limitg→0, V̂1(k);2pagd(k),
that is, the only Fourier component of the potential that s
vives is atk50. Then from Eq.~15!, it follows that any
saddle point configurationr(x) must be a constant~since the
Fourier transform of Eq.~15! can be satisfied only atk
50). Therefore, in the saddle point approximation, the eq
tion of state@cf. Eq. ~14! or Eq. ~18!# is the van der Waals
equation

p[
T

L
log Q̄5

Trs

12rs
2ar2. ~20!

Next, I show that the saddle point approximation becom
exact in the limitg→0. To see this, note first that the dete
minant ofV1 becomes singular in this limit, so that prefact
A diverges. To eliminate the divergence, a change of varia
is needed:h(x)5gh8(x). Equation~17! can be recast in the
form

Q/Q̄5A8E D@h8~x!#expF2
1

2
g2E dxE dx8h8~x!h8~x8!

3S W1~x2x8!1
d2bV0@c#

dc~x!dc~x8!
U

c̄
D G

3expF2
1

3!
g3E dxE dx8E dx9h8~x!h8~x8!h8~x9!

3
d3bV0@c#

dc~x!dc~x8!dc~x9!
U

c̄
G •••. ~21!

One may regard Eq.~21! as generating a perturbation s
ries ing @7#, and it is immediately apparent that the terms
third or higher order all vanish forg→0, since the correla-
tion functions of the hard rod system are finite. Direct eva
ation of the Gaussian term now yields

Q/Q̄5expS 1

2E dk

2p
ln@12rŜ0~k!bV̂1~k!# D

→expS 1

2
gbarŜ0~0! D→1, g→0. ~22!
2-3
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Thus, Q5Q̄, and the van der Waals equation of state
exact.

V. SECOND-ORDER FREEZING TRANSITION

The Kac potential can be used as a model of the liqu
gas transition. However, it cannot display a transition to
crystalline phase, because in the infinite range limit, it lo
all nontrivial momentum components. Consider instead a
sidual interaction of type

V1~x!5ag exp~2guxu!cos~bx!. ~23!

This interaction can be viewed as an extension of the K
model to the complex plane, and can be expected to gene
a crystalline phase, i.e., a state with broken translationa
variance, at low temperature. To look for such a phase, c
sider the Fourier transform of the potential

V̂1~k!5ag2F 1

g21~b1k!2 1
1

g21~b2k!2G . ~24!

In the limit g→0, it vanishes everywhere except for poin
k56b. It then follows that the Fourier transform of th
density,r̂(k), must have support on a discrete set of poi
or else the lhs of Eq.~13! is identically zero. This implies
that a solution for the density can be sought in the form o
cosine series@8#:

r~x!5 (
n50

`

rncos~nbx!. ~25!

The solution of this model now follows quite closely th
of the Kac model, exposed in the preceding section. In p
ticular, in the limit g→0, determinantA is again singular,
the singularity is removed by rescaling the field by a fac
of g so that random-phase appoximation and higher or
corrections again vanish forg50. The only remaining task
is the solution of the saddle point equation, Eq.~13!, which
now becomes

bar1cos~bx!52 lnF r~x!

zS 12E
x2s

x

r~w!dwD G
2E

x

x1s

ds
r~s!

12E
s2s

s

r~w!dw

. ~26!

Equation ~26! can be solved numerically with arbitrar
accuracy, in principle. Note that it always admits one~and
only one! solution of the formr5rgas5const. Now, for
ba,Ŝ0(b), the free energy is convex, hence the hess
corresponding to the constant density solutionrgas is posi-
tive, and the solution is the free-energy minimum. But as
increaseb ~lower temperature! to some valuebc , as soon as
Eq. ~15! is satisfied, the hessian determinant changes s
and the constant density solution is no longer a minimu
The fluid phase has disappeared.
05150
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The stable solution to Eq.~26! possesses a modulate
density with period 2p/b. @Higher harmonics will also be
generated, of course; cf. Eq.~25!.# Thus,r1 can be taken as
the order parameter of the transition. One verifies that
transition is continuous by noting that all Fourier coefficien
rn (n>1) vanish as powers of critical parametere5Tc
2T/Tc with critical indicesbn . For r0, which, of course,
does not vanish, exponentb0 characterizes the approach
rgas. The results obtained by solving Eq.~26! numerically
are summarized in Fig. 1, which shows a log-log plot of t
first few coefficientsrn versuse ~for n50, I have plotted
rgas2r0; for n52, I have plotted2r2). A conjugate gradi-
ent algorithm @9# was adopted. The following paramete
were used: hard core radiuss51; b52p/4.3, z5200 ~cor-
responding to a density of about 0.8!. The following numeri-
cal values of the indicesbn were found forn50, . . . ,4:
0.998, 0.502, 0.999, 1.46, 1.96. Thus, one concludes that
T→Tc

2 ,

r1}e1/2, ~27!

as expected, since MFT is exact for this model. All oth
coefficients are found to be proportional to integer pow
@10# of the order parameter,

rn}r1
n}en/2, n.1. ~28!

Furthermore, the excess density of the crystalline phase
ishes at the transition as the square of the order parame

r02rgas}r1
2}e. ~29!

Thus, the density changes continuously upon crystallizat

VI. CONCLUSIONS

In this paper, I have presented a simple model of o
dimensional particles with long range interactions that p

FIG. 1. Log-log plot of the Fourier coefficients of the densi
versuse. Circles, rgas2r0; squares,r1; diamonds,2r2; up tri-
angles,r3; down triangles,r4. The calculation was performed fo
s51, b52p/4.3, z5200 (rgas50.797).
2-4
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sess nontrivial components in momentum space. In the
nite range limit, the model is amenable to exact solution a
displays a crystallization transition. This transition is of se
ond order with mean field critical exponents.

The solution of this model, which is an extension of t
Kac model of the liquid-gas transition, confirms recent
sults, based on density functional theory and Monte Ca
simulations, which found continuous freezing of atoms co
fined within three-dimensional arrays of narrow channels@3#.
There are many physical systems where such transitions
be observable. Examples include an array of atoms confi
~or intercalated! within carbon nanotubes@11,1#, and also
inclusion compounds, in which guest molecules are later
confined, but retain axial mobility, inside a host crystalli
matrix @12#. Similar phenomena are often discussed in
context of 2D colloidal particles in an external modulat
laser field@13#.
n,

.
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s

nd
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What these systems have in common is that order in
transverse dimensions is imposed by an external struct
Long range order in the axial dimension is the only no
trivial occurrence, and is stabilized by the weak transve
interparticle interactions. Hence, modeling the physics w
an infinite range one-dimensional interaction renders
problem mathematically tractable without altering the e
sence of the physics. This is essentially the physics of pa
ing of hard spheres in one dimension, a trivial problem w
an exact solution, unlike the counterpart in higher dimensi

ACKNOWLEDGMENT

I am indebted to Xueyu Song for many interesting disc
sions.
n-

is
rs.
ys.
@1# M.M. Calbi, M.W. Cole, S.M. Gatica, M.J. Bojan, and G. Sta
Rev. Mod. Phys.73, 857 ~2001!.

@2# C. Carraro, Phys. Rev. B61, R16 351~2000!.
@3# C. Carraro, Phys. Rev. Lett.89, 115702~2002!.
@4# H.-J. Woo and X. Song, J. Chem. Phys.114, 5637~2001!.
@5# M. Kac, G.E. Uhlenbeck, and P.C. Hemmer, J. Math. Phys4,

216 ~1963!.
@6# J.K. Percus, J. Stat. Mech.15, 505 ~1976!.
@7# The adimensional coupling could be taken to begs.
@8# The choice of a cosine series, rather than a more general

rier series, corresponds to fixing the position crystal lattice a
whole with respect to the origin. This choice is arbitrary a
u-
a

inconsequential to the physics.
@9# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery,Numerical Recipes in C, 2nd ed.~Cambridge University
Press, Cambridge, 1992!, Chap. 10.

@10# Integer values are found within numerical accuracy. There
no doubt, of course, that the true values are indeed intege

@11# W. Teizer, R.B. Hallock, E. Dujardin, and T.W. Ebbesen, Ph
Rev. Lett.82, 5305~1999!.

@12# A.A. Khan, S.T. Bramwell, K.D.M. Harris, B.M. Kariuki, and
M. Truter, Chem. Phys. Lett.307, 320 ~1999!.

@13# L. Radzihovsky, E. Frey, and D.R. Nelson, Phys. Rev. E63,
031503~2001!.
2-5


