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Continuous freezing in an infinite-range one-dimensional model
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The partition function of the classical one-dimensional hard rod fluid with a residual long range interaction
can be evaluated exactly, with the aid of an auxiliary field, in the limit where the range of the potential goes to
infinity. If the Fourier spectrum of the residual interaction lacks components at finite wave vector, the infinite
range limit recovers the celebrated result of the Kac-Uhlenbeck-Hemmer model of condensation. Otherwise, it

predicts a continuous second-order freezing transition.
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I. INTRODUCTION

Much attention has been given, in recent times, to the
behavior of matter confined inside one-dimensional chan-
nels. A prime example is provided by noble gas adsorbed
inside carbon nanotubes. From the point of view of classical
statistical mechanics, these systems might be dismissed as
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completely trivial, since thermal fluctuations will always de-
stabilize any order ai >0. However, the weak interactions

Here,Q) o[ ¢] is the grand potential of the 1D hard rod system

in the transverse dimensions, such as those occurring whéh the external fieldi/(x), Wy is the functional inverse of
many nanotubes bundle up in three-dimensional structure$?V1, and the normalization constartis the determinant of
conspire to make the physics considerably more interesting/1 given by

e.g., by stabilizing ordered low temperature phd<€eg]. It

turns out that the behavior of these systems is very aniso-
tropic, and the strong correlations that may be present are
usually well described by one-dimensional models, with ap-

propriate perturbationg3].
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A=ex —Etrln2wvl =ex —Elen&rvl(k) .
4

In this paper, | discuss a class of strictly one-dimensionalt should be emphasized that E®) is exact provided that
(1D) models that are amenable to exact solution and displayV, exists. Since an exact solution is available for hard rods,
nontrivial phase behavior even in one dimension. This isexact solutions of the interacting system can be obtained in
possible when the interparticle interactions are of sufficientlyjthe interesting case of infinite range interactions.
long range, so that a local thermal fluctuation does not pre- Physical interaction potentials decompose naturally as ex-

vent particles to the left and to the right from acting coop-

pressed in Eq(l), although there is some degree of arbitrari-

eratively and maintaining long range order at nonzero temness in choosing the mathematical form \¢f. But such
perature. The model | discuss is that of a classical fluid witharbitrariness is confined to the region near the hard core and

a pairwise interparticle potential of the form
()

whereV, is the hard core potential of rangeandV; is a
residual interaction of range ™ *. The grand canonical par-
tition function of the modelQ, can be written exactly, after
effecting a Hubbard-StratonovictHS) transformation, in

V(X=X")=Vo(X—X")=Vi(Xx—=x"),

thus it is of no consequence to the present discussion.

The remainder of the paper is organized as follows. In
Sec. I, the relevant properties of the hard rod system are
reviewed, with emphasis on the convexity of the grand po-
tential. In Sec. lll, | show that partition function can be
evaluated in the saddle point approximation. The approxima-
tion becomes exact in the infinite range limit, discussed in
Sec. IV, where, in particular, the results of Kac, Uhlenbeck,

terms of the grand potential of the hard rod system in artand Hemmef5] are recovered for their model of hard rods

external field(the auxiliary HS field. Let 9=37_,NQy,
where{ denotes fugacity. Th&l-particle canonical partition
function at inverse temperatugis given by

1 1
Qszjl;[ aneXF<_5Vo+ Eﬁvl(xi_xj) . (2

The grand partition function can be expressed as a func-

tional integral over an auxiliary fields(x) through the

plus exponential attraction. In Sec. V, | consider potentials
with nontrivial momentum dependence in the infinite range
limit. Unlike the Kac model, wheré/,(k)~&(k) in that
limit, a nontrivial momentum dependence allows for a tran-
sition to a crystalline phase. This transition is shown to be of
second order.

II. ONE-DIMENSIONAL FLUIDS

Hubbard-Stratonovich transformation, following Woo and The key to the solution of the interacting 1D problem lies

Song[4]:
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in the hard rod grand potenti@l [ /]. The exact solution of
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the hard rod system in an external field, found by Pe[6lis Note that all ¢s are negative or zero everywhere R".
is given in terms of the density functiongBQg[p] Noting thatéBQ[ p1/ 5p(2) = — (2), from Eq.(9) it fol-
= B0 ¢]—fdzp(z)#(z). Unfortunately, to my knowl- lows that

edge, no explicit form is available for the grand potential

Qg ¥]. Constructing the latter from the former is difficult, 8"BQ[p] 5" Ynp(zy)
because the relation between field and density, 5p(zy) - - - Sp(zp) =Cn(z1, ... Z0)F 8p(z5)- -~ 6p(zy)

(10

Y(X)+Inp(x)—In=In 1_fo p(w)dw

X—

The negativity of the correlation functioh&q. (9)] implies
that all even-order functional derivatives 8f, are positive

- j s PO definite.
X 1- s q ’ This fact in turn implies tha€), (regarded as a functional
s_(,p(w) w of eithery or p) is convex Hence, it has a single minimum.

Since a uniform density solution can always be found, the
(5 1D HS system existsenly in the fluid phase. The density is

cannot be inverted in any simple manner to yield an expresf—Ound as the root of the transcendental equation

sion for p[ ¢] in an arbitrary field. On the other hand, the

functional derivatives of)[ /] have a simple expression in B=(1—pa)exp< __Po ) (11)
terms of the density, a fact that will prove very helpful in the { 1-po

following sections. Thus, the first derivative is simply the

negative of the density in the presence of the external fieldNote that although the existence of a single disordered phase
is expected in 1D because of fluctuations, the convexity of

B[ Y] Q, is a much stronger statement, as it excludes transitions
Sp(x) —p(x), ®  even in mean field theoryMFT) (unlike, e.g., the 1D Ising
model, which does display an ordering transition in MFT

and the second derivative is the Ursell function

Ill. THE SADDLE POINT EVALUATION OF THE
PARTITION FUNCTION

52 (0} 1)
BQol¥] _ Sp(X) = —Sy(x,x"). ()

SY(X) oY(X") Sp(x") The functional integral in Eq.3) can be evaluated by the
saddle point method. The saddle point configuratig(x) is

Of course, the two formulations in terms pfand ¢ are . . .
gbtained as the solution to the equation

equivalent, and many useful mathematical properties of th

grand potential can be derived from the properties of the 580 U]

density functional)o[ p]: M+f X' W, (x—x') (X" ) =0. (12)
oP(X)

p(2)

z -1 Although Q[ ] is unknown, this equation can be solved by
1—j dWP(W)) noting that the left-hand sidéhs) is (minus the density in
o ) the presence of the external fiald(x), by virtue of Eq.(6).
Thus, using Eq(5), one obtains the following equations for
Of particular interest are the expressions for the directhe saddle point densitirather than the field
correlation function$6]:

popl= [ dzp(a)|n
{

Cn(Zy, -+ 1Zn) f dx’' BV(x—x")p(x")=—In f(x)
5(1—f P(W)dW)
_ 8" M p(z1) +Inp(zy)] x=a
B 5P(22)' o 5P(Zn) 3 J’X+ods p(S)
n 11 [E(Zi_Zj)E(Zj_Zi+O')] * 1_fs—up(W)dW
——(n-2n> ! . 13

=t {1—fz p(wdw

z—

Substituting into Eq(8), one finds the equation of state in
the saddle point approximatid#],

;a(z)jl]l [e(z—2)e(zj— 2+ )]

1
T O ap=ppo— o [ ax| ax BV x)p00p0x),
(1)

—(n—=1)! J dz

[1— ingp(w)dw
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wherep, is the pressure of the hard rod system at the saddle V. THE INFINITE RANGE LIMIT AND THE KAC-
point density. UHLENBECK-HEMMER MODEL

Equation(13) admits a unique solutiop(x) provided that
form  82BQ[ ]l 5y(x)dy(x’) is positive definite, or,
equivalently, that Vi(X)=ayexp —y|x|). (19

Consider the following residual interaction:

—Sp(X—X") +W;(x—X")>0. (15)  This is the model studied by Ka al.[5]. They showed that
the partition function in the thermodynamic limit is given by
Once the saddle point density profile is determified us the largest eigenvalue of the kernel of a certain linear integral
. o . equation. They studied the limig—0 and found that the
call it p(x)], the saddle point field is obtained as . .
exact equation of state of the system has precisely the van
der Waals formbelow the critical point, it must be comple-
E(X)If dx’,BVl(x—x’);(x’). (16) mented by the Maxwell constructipn
The result of Kaet al. is recovered promptly in the func-
tional integral formalism exposed in the preceding section.
A shift in the functional integration variablg(x) = #(x) To begin, note that in the limiy—0, Vl(k) 2mayd(k),
— y(x) allows one to recast the partition function in the sug-that is, the only Fourier component of the potential that sur-
gestive form vives is atk=0. Then from Eq.(15), it follows that any
saddle point configuratiop(x) must be a constarisince the
Fourier transform of Eq(15) can be satisfied only ak
=0). Therefore, in the saddle point approximation, the equa-
tion of state[cf. Eq. (14) or Eq. (18)] is the van der Waals

Q= éAf Dl 7(x)]

1 equation
X ex —Ef dxf dx' p(x) p(x")| Wy(x—x")
TI — Tpo ) (20)
P=-—-l0g <= —ap”.
2B Y] fd fd , L 1=po
O — — — | dx| dx
SP(X)dp(x") m 3! Next, | show that the saddle point approximation becomes

exact in the limity— 0. To see this, note first that the deter-

minant ofV,; becomes singular in this limit, so that prefactor

A diverges. To eliminate the divergence, a change of variable

is neededz(x) = y#n'(x). Equation(17) can be recast in the
(17  form

8SBQo Y]
SP(X) Sp(X") Sp(X") |

X f dx" n(x) n(x") n(x")

where

_ 1
Q/Q=A’J’D[n’(x)]ex;{—§y2f de dx’' 7' (x) 7' (x)
_ _ 1 .
Q=eXF<—BQoW]_§j dxf dX’Wl(X—X’)lﬂ(X)lﬂ(X'))

2
x<w1<x—x'>+M )]
J‘ p(X—a) OPY(x) Sip(X") 7
=expl | dx———— L
1—fX70de(W) xex;{—gfj dxf dx’f dx" 5’ (x) ' (x") ' (X")
1 _
_Ef dxf dx’ BVi(x—x")p(x)p(x") | . (18 y 5°BQ[ ] 21)
Sp(X) Sp(x") S(X") |

One may regard Eq21) as generating a perturbation se-

Thus, the partition function is broken down into three ries iny [7], and it is immediately apparent that the terms of
factors. The first one, embodied @, leads to the mean field third or higher order all vanish fop—0, since the correla-
equation of state; the second one, stemming frdmand  tion functions of the hard rod system are finite. Direct evalu-
from the terms quadratic iry, represents the RPA correction ation of the Gaussian term now yields
to the equation of state; and the third one contains all higher- dk
order corrections. Note that the higher-order terms multiply - E oK . & ~
n-point correlation functions of the hard rod system. The QlQ=exp 5| 5IN[1=pSe(k)BV1(K)]
knowledge of their explicit form is not needed in what fol- 1
lows, however. This is because in the infinite range limit, all < 2
higher order corrections are shown to vanish. —>exp< 2 WMPSO(O)) -1 r=0 22
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Thus, 9= 0, and the van der Waals equation of state is  10° T T T
exact.

-1

V. SECOND-ORDER FREEZING TRANSITION 10

The Kac potential can be used as a model of the liquid-
gas transition. However, it cannot display a transition to a 10* }
crystalline phase, because in the infinite range limit, it loses _
all nontrivial momentum components. Consider instead a re-*
sidual interaction of type 107 F

Vi(x)=ay exp(— y|x|)cog bx). (23

This interaction can be viewed as an extension of the Kac 10
model to the complex plane, and can be expected to general

a crystalline phase, i.e., a state with broken translational in- ;- L
variance, at low temperature. To look for such a phase, con 10
sider the Fourier transform of the potential €

FIG. 1. Log-log plot of the Fourier coefficients of the density
+ (24) versuse. Circles, pgas— po; squaresp;; diamonds,— p,; up tri-
Y+(b+k)?  y*+(b—k) angles,p;; down trianglesp,. The calculation was performed for
o=1, b=2m/4.3, {=200 (pgac=0.797).

Vi(k)=ay?

In the limit y—0, it vanishes everywhere except for points

k==b. It then follows that the Fourier transform of the  The stable solution to Eq26) possesses a modulated
density,p(k), must have support on a discrete set of pointsdensity with period 2/b. [Higher harmonics will also be
or else the Ihs of Eq(13) is identically zero. This implies generated, of course; cf. E(5).] Thus,p; can be taken as
that a solution for the density can be sought in the form of ahe order parameter of the transition. One verifies that the
cosine serie$8]: transition is continuous by noting that all Fourier coefficients
pn (n=1) vanish as powers of critical parameterT,
—T/T, with critical indices,,. For pg, which, of course,
does not vanish, exponept, characterizes the approach to
Pgas: The results obtained by solving E@6) numerically
The solution of this model now follows quite closely that are summarized in Fig. 1, which shows a log-log plot of the
of the Kac model, exposed in the preceding section. In parfirst few coefficientsp, versuse (for n=0, | have plotted
ticular, in the limit y—0, determinantA is again singular, p . po; for n=2, | have plotted- p,). A conjugate gradi-
the singularity is removed by rescaling the field by a factorent algorithm[9] was adopted. The following parameters
of v so that random-phase appoximation and higher ordewere used: hard core radius=1; b=2m/4.3, {=200 (cor-
corrections again vanish foy=0. The only remaining task responding to a density of about D.8he following numeri-

p<x>:n§O pncogNbXx). (25)

is the solution of the saddle point equation, Etg), which  cal values of the indiceg, were found forn=0, ... 4:

now becomes 0.998, 0.502, 0.999, 1.46, 1.96. Thus, one concludes that, for
T—-T,,
cogbx)=—In p{x)
Bapy X)= X pr<e?, (27
ll1— p(w)dw
X as expected, since MFT is exact for this model. All other
Xto p(s) coefficients are found to be proportional to integer powers
- f ds——-—————. (260  [10] of the order parameter,
X
! L_U”(W)dw proeplxe  n>1, 29)

Equation (26) can be solved numerically with arbitrary Furthermore, the excess density of the crystalline phase van-
accuracy, in principle. Note that it always admits dla@d  ishes at the transition as the square of the order parameter,
only ong solution of the formp=py,c=const. Now, for 2

< i ; Po~ Pgas™P1* €. (29)
Ba<Sy(b), the free energy is convex, hence the hessian
corresponding to the constant density solutjgsis posi-  Thys, the density changes continuously upon crystallization.
tive, and the solution is the free-energy minimum. But as we
increaseB (lower temperatuneto some value3.., as soon as
Eq. (15 is satisfied, the hessian determinant changes sign,
and the constant density solution is no longer a minimum. In this paper, | have presented a simple model of one-
The fluid phase has disappeared. dimensional particles with long range interactions that pos-

VI. CONCLUSIONS
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sess nontrivial components in momentum space. In the infi- What these systems have in common is that order in the
nite range limit, the model is amenable to exact solution andransverse dimensions is imposed by an external structure.
displays a crystallization transition. This transition is of sec-Long range order in the axial dimension is the only non-
ond order with mean field critical exponents. trivial occurrence, and is stabilized by the weak transverse
The solution of this model, which is an extension of thejnterparticle interactions. Hence, modeling the physics with
Kac model of the liquid-gas transition, confirms recent re-an infinite range one-dimensional interaction renders the
sults, based on density functional theory and Monte Carlgyroplem mathematically tractable without altering the es-
simulations, which found continuous freezing of atoms conence of the physics. This is essentially the physics of pack-
fined within three-dimensional arrays of narrow chanfi8ls i of hard spheres in one dimension, a trivial problem with

There are many physical systems where such transitions may) st solution, unlike the counterpart in higher dimension.
be observable. Examples include an array of atoms confine

(or intercalateyl within carbon nanotubefgll,1], and also

inclusion compounds, in which guest molecules are laterally
confined, but retain axial mobility, inside a host crystalline
matrix [12]. Similar phenomena are often discussed in the ) . ) )
context of 2D colloidal particles in an external modulated ! am indebted to Xueyu Song for many interesting discus-
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